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The quantum-statistical generalization of the well-known classical, linear revised 
Enskog equation is derived for spatially uniform systems. This new quantum 
kinetic equation allows the study of equilibrium time correlation functions and 
their associated transport coefficients of normal quantum fluids where static 
correlations and degeneracy effects due to particle statistics (both are treated 
exactly) are important. Furthermore, we derive the quantum-statistical analog 
of the classical ring operator. These microscopic and systematic derivations are 
based on a recently developed superoperator formalism (including cluster 
expansion techniques) that, as a main feature, allows a clear distinction between 
static and dynamic correlations, which is crucial in the discussion of the Enskog 
approximation. 
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1. I N T R O D U C T I O N  

Equi l ib r ium time cor re la t ion  funct ions and  t r anspo r t  coefficients are of 
centra l  interest  in the m o d e r n  kinet ic  theory  of fluids near  equi l ibr ium. 
They  prov ide  a sui table  l anguage  for the descr ip t ion  of dynamic  
p h e n o m e n a  of many-pa r t i c l e  systems and  al low a direct  compar i son  
between theore t ica l  and  exper imenta l  results. The  ma in  object ive in kinetic  
theory,  therefore,  is the mic roscop ic  eva lua t ion  of these quanti t ies ,  which is 
equivalent  to der iving l inear  kinetic  equa t ions  from first principles,  i.e., 
f rom the Schr6dinger  equa t ion  in the q u a n t u m  case or  from the N e w t o n i a n  
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equations of motion in the classical regime. A well-known example of such 
a kinetic equation is the linear Boltzmann equation, which describes the 
dynamics of a dilute system. However, if one considers systems of higher 
density, the Boltzmann equation can no longer be used and one has to 
look for more general kinetic equations. By considering a dense gas of hard 
spheres, Enskog (1'2) was the first to propose a kinetic equation for one-par- 
ticle reduced distribution functions that generalizes the Boltzmann equa- 
tion to higher densities. The main feature of this Enskog equation is that, 
in contrast to the Boltzmann equation, it includes static (i.e., equilibrium) 
correlations and thereby takes account of excluded-volume effects 
(colliding particles cannot occupy a region of space where another particle 
is located). A revised (linear) version of this Enskog equation was then 
found by several authors (3-9) using more systematic arguments. Probably 
the most systematic and extensive discussion of (linear) kinetic equations of 
classical hard-sphere systems was given by van Beijeren and Ernst (6'7) using 
a diagram technique that is based on binary collision expansions in terms 
of pseudo-Liouville operators. (1~ 

It is a well-known fact that for moderately dense systems Enskog's 
theory gives fairly good results for transport coefficients such as the heat 
conductivity and the shear and bulk viscosity. The agreement with 
molecular dynamics calculations is within a few percent (11) and the 
measurements of transport coefficients in noble gases also agree fairly well 
with the result of Enskog's theory. (11'~2~'2 

However, all these theoretical investigations are restricted to (hard- 
sphere) systems obeying the laws of classical mechanics. In particular, an 
extension of Enskog's theory to quantum system has not yet been given as 
far as we know, although the physical picture underlying the Enskog 
approximation (see below) makes sense also in the quantum regime where 
degeneracy effects become important. Thus, it is to be expected that in this 
approximation the evaluation of transport coefficients of normal quantum 
fluids (such as 3He, 4He, spin-polarized hydrogen, etc.) also leads to a good 
agreement between theoretical and experimental results. 

It is the purpose of the present paper to fill this gap, i.e., to derive 
the fully quantum-statistical generalization of the linear revised Enskog 
equation (known from classical kinetic theory) for spatially uniform 
(homogeneous) systems. The extension to nonuniform fluids will be presen- 
ted in a subsequent paper. The many-body system under consideration 
here consists of identical particles which pairwise interact via a continuous, 
translationally invariant, short-range potential and which obey Fermi-Dirac 
(FD) or Bose-Einstein (BE) statistics. The central quantities of interest 

z For the interpretation of neutron scattering data on classical liquids with the help of 
Enskog's theory see also ref. 33 and the references given therein. 
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to us are space-independent one-particle equilibrium time correlation 
functions and their associated transport coefficients. For such correlation 
functions we shall derive a kinetic equation in the Enskog approximation 
which reduces to the homogeneous linear revised Enskog equation in the 
classical limit and for hard spheres. (Henceforth we call this equation the 
linear equations Enskog equation.) The same procedure leads also to trans- 
port coefficients (such as the shear viscosity and the thermal conductivity) 
expressed in terms of the linear quantum Enskog collision operator, 
denoted by B~ E. Now the aforementioned Enskog approximation is 
characterized by the fact that dynamic correlations are neglected (as in the 
Boltzmann description), and only uncorrelated binary collisions are taken 
into account, whereas the static correlations originating from the equi- 
librium distribution (i.e., from the canonical density matrix) arte treated 
exactly. In other words, this means that the short-time limit of the correla- 
tion function obtained in the Enskog approximation agrees with the exact 
correlation function at time t equal to zero. We shall briefly discuss also the 
opposite case where (certain) dynamic but no static correlations are 
retained. This will lead us to the quantum-statistical generalization of the 
well-known classical ring operator (13-15/ (without static corrections). The 
simultaneous treatment of both static and dynamic correlations is also 
possible and will be discussed elsewhere. 

The method we use is based on a powerful superoperator formalism 
recently developed in refs. 16-18 (hereafter denoted by I-III, respectively). 
The main feature of this microscopic approach is the utilization of 
projectors in combination with cluster expansion techniques which allow a 
systematic reduction of the many-body problem to a few-body problem. 
Thereby degeneracy effects due to particle statistics are fully taken into 
account by the help of a resummation procedure leading to renormalized 
cluster expressions. 

The starting point in our evaluation of the correlation function is 
given by a Dyson-equation-like formula for superoperators derived in II. 
Rewriting this formula in a form appropriate to carrying out the Enskog 
approximation, we arrive at the desired result with the aid of the 
abovementioned resummation procedure which slightly generalizes the one 
extensively discussed in III. It is at this point where the advantage of our 
method over other formalisms (especially over the Green's function 
approach) fully shows up, namely the fact that dynamic and static 
contributions are clearly separated in our treatment, which therefore 
immediately allows us to identify the terms being relevant in the 
approximation considered. The linear quantum Enskog equation thus 
obtained is still quite complicated, as was, of course, to be expected in view 
of the nontrivial structure of its classical counterpart. This is partly due to 
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the fact that static correlations, which occur in the form of reduced 
distribution operators, still contain the full many-body Hamiltonian (as in 
the classical case), partly due to the noncommutability of quantum 
operators, and partly due to the quantum-statistical correlations resulting 
from FD or BE statistics. Nevertheless, a further reduction of the involved 
collision operator B~ E in a specific application seems to present no 
prohibitive difficulties and shall be considered elsewhere. It should be noted 
in this connection that B1QE will be given here in a form that allows a 
further analysis without detailed knowledge of our formalism. 

The paper is organized as follows. In Section 2, basic definitions will 
be introduced together with a short summary of some results obtained in 
II and needed here. In Section 3, a linear generalized kinetic equation is 
derived, the memory kernel of which serves as starting point for the 
renormalization procedure performed in Section4 (in the Appendix, 
respectively). There we also discuss the Enskog approximation that leads 
to the linear quantum Enskog collision operator B~ E in its most compact 
form [Eq. (4.18)]. In Section 5, then, going over to the Markovian limit, 
we arrive at the linear quantum Enskog equation [Eq. (5.13)], and at 
transport coefficients expressed in terms of B1 ~ Section 6 deals with the 
Boltzmann and classical limits of B~ z. In Section 7 we sketch the deriva- 
tion of the quantum analog of the classical ring operator and discuss some 
of its properties in connection with long-time tails of correlation functions. 
Some conclusions are gathered in the final Section 8. 

2. E Q U I L I B R I U M  T I M E  C O R R E L A T I O N  F U N C T I O N  

In this section, besides introducing some definitions, we give a brief 
resume of some results obtained in a previous work (II) and which form 
the starting point for our derivation of a linear Enskog equation for normal 
quantum fluids. 

The central quantity of interest here is the equilibrium (one-particle, 
one-particle) time correlation function of the form 

C(t) = (a( t )b  ) = Tr pa(t)b (2.1) 

where p is the canonical density matrix, 

p = Z- l e -BH,  Z = Tr e BH (2.2) 

at temperature T =  (flkl3) -1  (kB is Boltzmann's constant). The system we 
consider consists of N identical, pairwise interacting fermions or bosons of 
mass m contained in a periodicity volume f2. For notational simplicity, the 
spin of the particles shall not be taken into account explicitly in the 
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following; see, however, the remarks given in Section 8. The Hamiltonian 
of this system reads 

N 

1-I = Ho + v =  E I-Io(i) + E vii (2.3) 
i = 1  l<~i<j<~N 

with 

Ho(i) =--02 (2.4) 
2m 

and 

Vu= V(lre-  rj]) (2.5) 

Pi is the momentum operator of the ith particle and V is a short-range 
pair-interaction potential that depends only on the relative coordinates of 
the particles i and j, i.e., the system is translationally invariant. The 
observables a and b are given by sums of one-particle operators, i.e., 

N N 

a= • ai, b=  Z bi (2.6) 
i ~ l  i = 1  

with ( a ) = 0 ,  which can always be achieved by replacing a by ~a =  
a -  ( a ) .  In this work, as mentioned before, we restrict our consideration 
to the spatially uniform case, i.e., to the case where a~ and bi are only func- 
tions of the momentum operator Pi. Therefore a and b are diagonal in the 
momentum eigenstates. As a consequence, the kinetic equation governing 
the time evolution of the considered correlation function C(t) does not 
contain spatially nonuniform terms (see below). The extension of the 
present formalism to inhomogeneous situations (arising form nondiagonal 
observables such as the particle density or current density operators) will 
be discussed in a subsequent paper. Let us also mention here (for details, 
see Section 5) that such homogeneous correlation functions occur, e.g., in 
the kinetic part of the Green-Kubo formulas for transport coefficients 
(such as the shear viscosity or thermal conductivity) or in forms of the 
fluctuation-dissipation theorem. (19'2m 

The Heisenberg operator a(t) is given by (we set h = 1) 

a( t ) = eim ae-  iHt = eiCt a (2.7) 

In the last equation we introduced the Liouville operator L defined by 
La = [H, a]  with 

N 

L = L o + L v  = • Lo( i )+ ~ L,j (2.8) 
i = 1  l ~ i < j < ~ N  

822/59/3-4-11 
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where 
Lo(i)a= [Ho(i), a] (2.9) 

Lua= I V  u, a] (2.10) 

The Liouville operator belongs to the class of superoperators (19 21~ which 
are formally defined as linear operators acting on ordinary Hilbert-space 
operators. Further superoperators will be introduced below. 

Since we consider a fluid consisting of fermions (bosons), the trace 
occurring in Eq. (2.1) has to be taken over a complete set of anti- 
symmetrized (symmetrized) states, which we will choose as eigenstates 
of the total momentum. It is then not difficult to see [see, e.g., II, Eqs. 
(II2.11-17)] that this restriction due to the statistics can be avoided by 
introducing the projector 7r that (anti-)symmetrizes the product states: 

1 ~rl... u 1 
7Z=N. v =N---~ Z ~ (2.11) 

f i e  S N 

72~ ]k I .-. kN> = r/I~ [k~(1)""" ko(N)) (2.12) 

Here, 

Ikl " " k N ) =  Ika> x - . .  • IkN> = Ik> (2.13) 

is the direct product of single-particle momentum eigenstates. The sum in 
Eq. (2.11) runs over all permutations a of N particles, and ql~l equals 1 for 
bosons, whereas for fermions it equals 1 ( - 1 )  for even (odd) permutations 
or. Using this, the correlation function (2.1) can then be rewritten as 

C(t) = Tr~ blhl( t  ) (2.14) 

where the one-particle time correlation operator h~(t) is defined by 

hi(t) = N Tr2... N(fa)(t) (2.15) 

and correlations due to the statistics are now completely absorbed in f :  

f =  pTz = ~p (2.16) 

Tri...j = Tr i . . -Tr j  denotes the trace for Boltzmann (i.e., classical) statistics. 
Note that in deriving Eq. (2.14) we have used the fact that fa(t)  = (fa)(t). 

In the following we also need the Laplace transform of C(t) [and 
hl(t)]  defined by 

C(e)= dte  ~tC(t), e>O (2.17) 
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Now. in II [see Eq. (II3.45)] we have shown, by making use of 
projection operators and cluster expansion techniques, that C(e) [hl(e ), 
respectively] can be reduced to the following form: 

C(e) = Tr~ blhl(/3) (2.18) 

where 
1 

hl(~) - -  N~(e)a~ (2.19) -/~1(~) 

The one-particle superoperators /51(e) and Nl(e) (acting on everything to 
their right) are given by 

1 N 
D I ( e ) = e N T r 2 . . . N / S L v - - P f  ~ aliU11 (2.20) 

- iQL i= 
with 

and 

N 
U~=NTr2...Nf ~ a~, (2.21) 

i=1 

~ l ( e )=NTr2 . . .NP( l+Lv  1 _  ) N e - iOL 0 f i=12 0"li (2.22) 

Here the superoperator/5 projects onto the diagonal matrix elements of an 
ordinary operator y as follows: 

(2.23) 

where Ykk' = <klylk'>, and a{k},{k,} equals 1 if the sets {k} ( =  {kl,... , kN} ) 
and {k'} are equal, and 0 otherwise. The complement Q is given by 1 - t5 .  
For more details we refer to II (Section 2); let us only note that the 
occurrence of 6{k}, {k,} in Eq. (2.33) (instead of 3kk') is a direct consequence 
of the FD or BE statistics. Finally, a o. is a permutation superoperator 
which interchanges the indices i and j. Therefore, the purely static factor UI 
also represents a superoperator. 

We conclude this brief review by noting that formula (2.19) is an exact 
relation only in the thermodynamic limit (characterized by f2, N-*  oe with 
finite density n = N/f2) and holds there for all e with e > 0. 

3. KINETIC EQUATION 

In this section the formula (2.19) will be transformed into a kinetic 
equation for hi(t) containing a generalized collision operator as memory 
kernel. This will be achieved by some simple algebraic manipulations. 
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Let us first rewrite the expression /)~ given in Eq. (2.20). Replacing 
there the last P by 1 - Q, we find 

DI(g ) = Dl(e) - eNl(e) (3.1) 

with 

and 

N 
D I ( e ) = N T r z . . . N P L v  f E Oli U11 

e - i Q L  i=l 
(3.2) 

N l ( e  ) - -  N Tr2... N P L  v - -  
1 N 

Of ~ a~iU1-1 (3.3) 
e - iQL i= 1 

Note that the first P in /)~ has been replaced by the simpler projector 
p = p 1 - . . N ,  defined through 

pi.  .j = p i . . .  pj ,  (P~Y)kk' : Ykk' (~ksk's (3.4) 

since Tr2...NP= Tr2.. .NP. Actually, this P could even be dropped, for it 
results automatically due to momentum conservation (see Appendix B 
of I). For later convenience, however, this P is retained. 

Next using (3.3) and the identity p I U I a  ~ = U l a l ,  which follows from 
momentum conservation and the fact that al is diagonal (i.e., P~al=a~) ,  
we write for N~(e), given in Eq. (2. 22), 

J ~ / l ( ~ ) a l  = [1 + N~(e)] U~a~ (3.5) 

Insertion of (3.1) and (3.5) into (2.19) then yields 

1 
h i (e ) -  [1 + NI(e)] Ula  1 (3.6) 

511 + NI(~)] - Dl(e) )  

This expression can finally be rewritten in the following form: 

1 
h i ( g ) = -  Ula 1 (3.7) 

~;-- BI(~ ) 

Bl(e) is a generalized collision operator and reads explicitly 

1 
BI(~ ) - ) [ N 1  ,--------  ~ 1  + D,(e) (3.8) 

where Dl(e)  and Nl(e  ) are given in Eqs. (3.2) and (3.3), respectively. The 
expressions (3.7) and (3.8) form our basic equations from which all the 
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following results will be deduced. As we shall see later, a great advantage 
of our generalized collision operator Bl(e) is that the dynamic correlations 
[coming from the s-dependent parts in Dl(e) and N~(e)] and the static 
correlations (coming from the equilibrium distribution f )  are clearly 
separated. This fact immediately allows us the indentification of those 
terms in Bl(e) that are relevant for obtaining the quantum-statistical 
analog of the classical Enskog theory. 

As a preparation toward this aim, let us first transform (3.7) into a 
kinetic equation for h~(t). For that purpose multiply Eq. (3.7) from left 
with e -B l (e )  and go back to time space. As a result, one obtains the 
following exact equation: 

~hl(t) 
with initial condition 

= dt' Bl(t' ) h t ( t - t ' )  (3.9) 

hl(t = 0) = Ulal (3.10) 

This equation can be interpreted as a non-Markovian generalized kinetic 
equation for hl(t ). The memory kernel Bl(t) is the inverse Laplace trans- 
form of the generalized collision operator (3.8). Note that in (3.9) there is 
no free-streaming term of the form iLo(1)h~(t) as would occur in spatially 
nonuniform systems (see subsequent paper). This, of course, is a direct con- 
sequence of the fact that we consider only diagonal observables a and b 
(being space independent), since then hl(t ) is diagonal, too [i.e., P~h~(t)= 
hi(t)] and hence Lo(1 ) h i ( t )=0 .  

In order to get a better feeling for the static factor U~ (and its inverse 
U1 l) defined in (2.21), we conclude this section by briefly stating some of 
its properties (although they will not be needed in the following sections). 
Thereby we closely follow ref. 22 (see Appendix B there). First we note that 
U~ can be written as 

Ux =f~ + Yr2 f~2a12 (3.11) 

where the reduced distribution operator f l  .... has been introduced: 

N[ 
f~ ..... - -  Trs+~., u f  (3.12) 

( N - s ) !  

Now, the second term in (3.11) also contains a one-particle part f~ which 
comes about by the statistics. More explicitly, with the help of the identity 
T r i z0= t /  (~/ equals - 1  for fermions and 1 for bosons) and the cluster 
expansion 

f12=g12+l'c12flf2, rCl2 = 1 -+- rot2 (3.13) 
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where g12 is the two-particle quantum correlation operator, one finds 

U1 = F1 + Tr2 gl2al2 (3.14) 

Here, the superoperator F~ applied to an ordinary operator y is defined as 

F I y  = f l  y(1 + r/f•) (3.15) 

As in ref. 22, we may express UI  1 in terms of a quantum direct correlation 
operator c~2 : 

U11 = F~-I(1 - Yr 3 gl3F31c32) (3.16) 

which fulfills the quantum analog (22) of the classical Ornstein Zernike 
relation, 

C12 = g12  - - T r 3  g13F31c32 
= g12  - -  Tr3 c13F31g32 (3.17) 

This results from the fact that UI U11 -- UF~UI = 1. These relations might 
be helpful in a further evaluation of the linear quantum Enskog collision 
operator to be derived below. 

4. CLUSTER EXPANSION A N D  R E N O R M A L I Z A T I O N  OF BI (E ) 

In this section we start the evaluation of the generalized collision 
operator Bl(e) by performing cluster expansions and a renormalization 
procedure which is necessary to take into account the effects of the FD or 
BE statistics properly. The aim is to extract the terms relevant for the 
Enskog approximation. In complete analogy to the classical hard-sphere 
case (see, e.g., refs. 6-8, 23, and 24) and as stated in the introduction, we 
mean by this approximation that in the dynamic part of the collision 
operator Bl(e) only the binary collision contribution (combined with a 
certain short-time limit) is retained, whereas the static factor f is treated 
exactly. In this way, all dynamic correlations between collisions are 
neglected, and, therefore, from this point of view, the Enskog approxima- 
tion is expected to give a good description of the correlation function C(t) 
at high densities, but only for short times. 

To start with, let us now consider the following expression obtained 
from Eq. (3.8): 

1 
BI(e) hx(e) - 1 + U,(e~) D,(~) hi(e) (4.1) 
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where hi(e) is the Laplace transform of h~(t) defined in Eq. (2.15). D~(e) 
and N~(s) are given in Eqs. (3.2) and (3.3), respectively. Now we perform 
a cluster expansion of the dynamic parts in D~(e) and Nde), respectively. 
Thereby we can use the same steps that take one from Eq. (II3.5) to 
Eq. (II3.i l)  in II [see also Eq. (II3.24)]. This gives 

N N! N 

D~(a)= ~ aTr2 .... PG1 . . . .  (8) (N_s)-----~Tr,+l...Nf ~ axiU~ -~ (4.2) 
s ~ 2  i = l  

and 

N N! N 
NI(~)-- Y', Tr~ .... PG~ ..... (~) (N_s)------~.Trs+~...NO[ ~ aliU~ -~ (4.3) 

s = 2  i ~ l  

Here, the s-particle cluster superoperator G~ .... is given by 

1 1 
GI .... (e) = iL~2 i0(12)(Lt2 + L~3) 

e - iQ(12) L(12) E - iQ(123) L(123) 

xiQ(123 ) . . . i Q ( 1 - - . s -  1 ) ( L x s +  . . -  + L  s ~s) 

1 
x (4.4) 

e-iQ(1 . . . s )L(1  . .-s) 

where 0(1 ... k) denotes the k-particle version of Q = Q(1 -.. N). 
By expanding [ l + N l ( e ) ]  -1 in Eq. (4.1), we see now that in the 

Enskog approximation for Bl(e) the term N~(e) is irrelevant, since it leads 
to dynamic contributions where at least three particles are involved [e.g., 
G12(g)' ' '  a l3(e) - . . ,  etc.]. Thus, we can restrict our considerations to Dl(e) 
in the sequel. 

At first sight one might think that in D~(e) only the binary collision 
term G~2(e) has to be retained in the Enskog approximation. However, as 
discussed in Section 4 of II and more thoroughly in Section 4 of III, the 
other collision terms, G1 ..... s > 2, also lead to binary-collision contribu- 
tions due to the effect of the FD of BE statistics. In III it has been 
demonstrated with the help of exact resummations how the cluster series in 
D~(e) can be cast into a renormalized form where the s-particle contribu- 
tions are grouped together explicitly. This result shall now be used here, 
too. For that purpose, it is most convenient to exploit the following 
identity: 

f;~ = f/~(e) (4.5) 
2=0 
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with the abbreviation 

N N 

h(e)= ~ a~U{-~hl(e)= ~, U3~hi(e) (4.6) 
i = 1  i = l  

The generalized distribution operator f~ is defined as 

f~ = Z - l ( 2 ) e  ~Ue~(~)~, Z(2) = Tr e-/~/e ~h(~) (4.7) 

To check the validity of Eq. (4.5), one has to take into account that 
Tr p/~(e) vanishes: 

1 1 1 < a > = 0  (4.8) Tr ph(e) = ~ T r ,  U~ U ( ' h , ( ~ ) = ~ T r l  hl(e ) =~ 

In the first equality we have used that Tr can be replaced by Tr~ ...N1t [see 
the transition from Eq. (2.1) to Eq. (2.14)] and Eq.(2.21). The third 
equality follows from the identity Tri..,j L ( i . . . j )  . . . .  O. 

Furthermore, in analogy to Eq. (3.12), we define 

N! 
f~  .... - - -  Trs +,.,, x f  ~" (4.9) 

(N- -s ) !  

Using this and the identity (4.5), we can rewrite Bl(e)hi(e) as follows: 

1 ~)~ ;,:o dl(~) (4.10) BI(~) hl(~) - 1 ~- N I ( ~  ) 

with 

d~-(~) = ~, eTr2 .... p t  ..sG1 .... (e)f~2 .... (4.11) 
s = 2  

Note that d~(e) is an ordinary operator. 
Next, performing a cluster expansion of ~" fx .... and making use of the 

renormalization procedure discussed in III, we show in Appendix A that 
(4.11) reduces to the following expression in the Enskog approximation: 

1 
d~'(e) = - ~ Tr2 p12T~2(~ ) 

e - iLo(12) 
fl;'2 + DTC (4.12) 

with the renormalized Liouville t-matrix defined by 

1 
Tf2(e) = -irc12L12 Ee - iLo(12)] (4.13) 

- iL(12; 2) 
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Here, ~12= 1-~12 ,  and the renormalized Liouville operator s  is 
defined by 

s 2) = Lo(12 ) + s (4.14) 
^2 2 L12 Y = $12 VI2 y - y V 1 2 S ~ 2  (4.15) 

where the quantum-statistical weighting operator (18'22'25,26) S~2 is of the 
form 

S~2 = 1 + rLf ~ + rl f  ~ (4.16) 

DTC denotes the dynamic triple (or higher) collision terms. 
The last step in our Enskog approximation consists in replacing the 

free resolvent g / [ e - iLo(12) ]  occurring in (4.12) by its large-e (i.e., short- 
time) limit 1; thereby the corrections of order e -1 are omitted. Since we 
are interested in systems of arbitrarily strongly interacting particles, the 
t-matrix T~2(e) occurring in (4.12), however, must be fully retained and 
cannot be expanded in powers of e -~, i.e., in powers of the interaction 
Liouvillian s Apart from this, it should be noted that the large-e limit 
of T12(g) (i.e., -in12L12 ) would lead to a vanishing contribution when 
static correlations are neglected in Eq. (4.12) (since then P L t 2 P =  0). That 
means one would not obtain the Boltzmann equation in this case, which, 
of course, stands in contrast to the natural requirement that this equation 
should follow from the more general Enskog equation in the limit of no 
static correlations (see Section 6). 

Under these conditions our result is valid for very short times, being 
much shorter than the mean free time ~m between collisions. We note that 
such a short-time limit also has to be introduced in the derivation of the 
Enskog equation for classical hard-sphere systems. (3-8~ The new feature 
here is that the binary collision operator f'~z(g) iS e dependent (due to the 
finite duration of a collision), whereas the corresponding classical hard- 
sphere quantity, (1~ describing instantaneous collisions, does not depend 
on e. 

Therefore, the final form of the generalized collision operator Bl(e)  
reads in the Enskog approximation 

BI(e)  h~(e) = BQE(e) h,(e) + DTC (4.17) 

where 

BQE(e) h~(e )=  - ~--2z ~= 1 ~ . , 0 2 Tr2 p12T~'2(g)f[2 (4.18) 

BQE(g) is the linear quantum Enskog collision operator given in its most 
compact form. More explicit representations of  B?E(~:) are given below. In 
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Section 6, we shall see that in the classical limit (and for a--* 0 +), BQE(~;) 
reduces to the revised linear classical Enskog collision operator (for hard 
spheres) well known in the literature. ~6'7) 

In the next sections we shall use our collision operator (4.18) for the 
derivation of a linear quantum Enskog equation and for the calculation of 
transport coefficients. This means that we have to assume that (4.18) can 
be used outside the time regime for which it has been derived. This seems 
to be a reasonable assumption in view of the fact that in classical Enskog 
theory such an extension of the time regime leads to very good agreement 
with experimental data. (8) 

5. LINEAR Q U A N T U M  ENSKOG EQUATION 

Using the above results, it is now an easy matter to derive the linear 
quantum Enskog equation for hi(t). Before doing so, let us first write down 
a more explicit form of B~n(e) given in Eq. (4.18). For this we need the 
derivatives o f f ~ ,  f1~2, and T;)(g) with respect to 2. By means of Eqs. (4.5), 
(4.6), and (4.9) they are easily found to be 

and 

O f~=h~(e) (5.1) 
~-'~ 2=0 

~2 f~2 = [A2(1 + aa2) + Tr3A23a,3] Ul~h,(e) (5.2) 
2=0 

1 1 
~"~'2(/~ ) = f~12(~) iL~12[hl(~)] [~ - iLo(12)] 

=o e -  iLo(12) e - is 
(5.3) 

where T12(e)=/"~2-~ and s  s 2=0) .  The new superoperator 
L~2[y~] , applied to an arbitrary operator a, is defined as 

L~2[yl]  a = 11(y ~ + Y2) V~2a- aV12rl(Y1 § Y2) (5.4) 

Yl (and y2=~r12y1) is also an arbitrary one-particle operator. Note that 
L72 [ �9 ] is of purely quantum-statistical nature and vanishes therefore in the 
classical limit (i.e., for r/= 0). Collecting these results, we find for B~E(e) 

B?E(~)  ~" BQE'cI(/~) "{- o?E'q(E)  (5.5) 

with 

) = 1 
--~Tr2p12T12(e)[fldl+~12)+Tr3fma13]U~-i (5.6) 
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and 

1 12 1 iL~2[" ] 1 [~ - iLo(12)] f12 BQE'"(g) = - - ~ T r 2 P  iLj2 e - i [ , ( 1 2 )  ~--is  

(5.7) 

As suggested by the superscripts, BIQE'cI(c) represents the quantum analog 
of the revised linear classical Enskog collision operator (see Section 6), 
whereas BQE'n(~) results from purely quantum-statistical effects and there- 
fore has no classical counterpart. Note also that the static correlations, 
represented by f and Ui -~, are exact in the sense that they contain the full 
many-body Hamiltonian. In contrast to this, the dynamic part contains 
only two-particle Liouville operators, in which, however, the influence of 
the other particles via the quantum statistics is taken into account through 
the statistical weighting factor S~2 [ = S ~ / ~  see Eq. (4.16)] occurring in 
s 

We remark that if one wants to express BQE(e) in terms of the more 
familiar ordinary Hilbert-space operators (instead of superoperators), it is 
more convenient to do so before performing the derivative in Eq. (4.18) 
with respect to 2. As a matter of fact, 7~1~2(e) can directly be expressed in 
terms of the exchange-modified t-matrix as shown in II [see Eq. (IID.13)]. 
As a consequence, BQE(e) may also be written as 

BQE(e) h l (e )=~2  ~= i f+o~ 0 ~ -o~ dE Tr 2 p12 

x{i~2( E -  ~ o + ; '~')[-fi2 g12( E ) + g~ )f12] 

~,~ o ,E + ) - LJ12g~2t + g~ )f~3]i~2(E+; 2) 

- ff~2(E-; 2)[f(2 g~ + g~ 

x i~2(E+; 2) ~" o + o - S12[gi2(E )Jr-gl2(E )]} (5.8) 

Here, i~(E-+; 2) is the exchange-modified t-matrix (see, e.g., ref. 25) defined 
as 

1 {2_i[Ho(12)_E] } f~ (E  ;2) = V12 ~ / 2 -  i[/)(12; 2 ) - E l  (5.9) 

and i~2(E+;2)=Ei12(E ;2 ) ]  + , where E+=E+ie/2. The new Hamil- 
tonian/)(12;  2) (which is not self-adjoint) is given by 

/)(12; 2) = Ho(12) + ; $12 V12 (5.10) 
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Here g~ ) is a free propagator and reads 

1 
g~ ) - (5.11) 

e/2 + i [H0(12) - E]  

Note that �89 12 has been absorbed in G since �89 = fl~2 . 
The representation (5.8) should be well suited for an approximate 

treatment of B~E(e) as given, e.g., by a scattering length expansion of f~2. 
This, however, shall not be further discussed in this work. Finally, let us 
note that in the Boltzmann limit, (5.8) reduces to the linear quantum 
Boltzmann collision operator (see Section 6). 

Next, we shall determine the kinetic equation for hi(t) in the Enskog 
approximation. For this we insert (4.17) into (3.9), which yields 

~ h l ( / )  = fo dt' B~E(t ') h~(t - t') + DTC (5.12) 

where B~Z(t) is the inverse Laplace transform of BIQE(e). With the initial 
condition (3.10) for hi(t) and with B~E(e) given in Eqs. (4.18), (5.5), or 
(5.8), respectively, this non-Markovian kinetic equation determines hi(t) 
within the Enskog approximation. 

An interesting limiting case of this equation is obtained in the 
Markovian limit. 3 This limit makes sense if the kernel BQE(t) decays 
rapidly to zero for times larger than a typical binary collision time zc. We 
shall now assume that this condition is fulfilled here. One may then extend 
the upper limit of the time integral to infinity with negligible error and 
expand h i ( t - t ' )  around t. Thereby only the first term, hi(t), must be 
retained in the Enskog approximation, since the other terms (describing 
retardation efects due to the finite duration of a collision)lead to dynamic 
processes involving at least three particles. Thus, we eventually arrive at 
(dropping now the term DTC) 

et  h i ( t )  = B?Eh1(t) (5.13) 

with 
B~E= lim B~E(~) (5.14) 

e ~ 0  + 

where B~E(e) is given in (4.18) or more explicitly in (5.5) or (5.8). This 
equation, together with the initial condition (3.10), is now interpreted as 

3 As mentioned at the end of Section 4, Eq. (5.12) shall now be considered for times t outsides 
the time regime for which it has been derived, in particular for t > •m >~ "Cc, 
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the linear quantum Enskog equation for the equilibrium one-particle time 
correlation operator hi(t). It represents the generalization of the revised 
linear classical Enskog equation for hard-sphere systems (see Section 6) to 
a normal quantum fluid consisting of fermions or bosons which interact via 
a continuous short-range potential. It is also worth mentioning in this 
connection that our Enskog operator B QE as, e.g., given in Eq. (5.8) 
includes the possibility of bound states resulting from short-range attractive 
forces between the particles. 

We conclude this section by giving the Green-Kubo formula for 
transport coefficients in the Enskog approximation. First we note that for 
spatially uniform microscopic currents the general form of a transport 
coefficient is given by (see ref. 20, p. 85) 

2ab = ~--~ dt ([6a(t)b+b6a(t)])  (5.15) 

with 6a = a -  (a) .  Under the assumption that the observables a and b are 
self-adjoint, (5.15) can also be written as 

fl lim Re C(e) (5.16) 

Here, Re means real part and C(e) is the equilibrium correlation function 
given in Eqs. (2.17) and (2.1), respectively. Making use of Eqs. (2.18), (3.7), 
and (4.17), one immediately obtains the transport coeff• 2ab in the 
Enskog approximation: 

fl lim Re cQE(e) (5.17) 

with 

1 
cQE(g) = Trl b~- _ BQE(~) U~a~ (5.18) 

where the linear quantum Enskog collision operator BQE(e) is given in 
either (4.18), (5.5), or (5.8). U 1 is defined in (2.21) [see also (3.11) and 
(3.14)]. As physical examples for 2a QE we mention the kinetic parts of the 
shear viscosity and of the thermal conductivity, respectively. The former 
quantity is obtained by setting 

a=b =--1 ~, ,6i:,~6iy (5.19) 
mt=l 
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in )~b, whereas the latter follows from the choice 

1 N 

a = b  2m2N/~/_~1 ~2~i (5.20) 

Note that the case a = )ZN_I ~, is excluded because the total momentum is 
a conserved quantity in our system [i.e., a(t) = a for all times], which leads 
to a time-independent correlation function. 

6. B O L T Z M A N N  L IMIT  A N D  CLASSICAL L IMIT  OF B1QE 

In this section we shall briefly discuss two limiting cases of the linear 
quantum Enskog equation (5.13). The first case we consider is the 
Boltzmann approximation, in which B QE reduces to the linear quantum 
Boltzmann collision operator. Since this case has been treated in Section 4 
of II, we can be very brief here. The starting point is Eq. (4.18). The 
Boltzmann approximation of B~ E is obtained by simply neglecting all static 
correlations in B QE, which amounts to replacing fl;'2 by 12r0, XrO, X 7~ J l  J 2  , where 
fo,;. (=Uf0,; .)  is equal to f~ [see Eqs. (4.7) and (4.9)], but with the inter- 
action V put equal to zero. The f ' s  occurring in TI~ are also to be replaced 
by fo. On comparing the resulting expression with Eq. (II4.12) obtained in 
II and making use of Eq. (II4.20), we arrive at the announced result: 

_--} ~ .  lim [--Tr2 p 1 2 ~  (g~p12fo,2fo,;.q [BQEh1(e)]k,k, ) = 0 s ~ 0 +  12~ ! d l  J 2  A k l k l  g2 

=-4~  ~ r 
k2,k~,k2 

x (1 + t / f~  o o o ~ + ~Ifk2)fklfki[ 1( ; kx) 

+ h~(s; k 2 ) -  ~/1('% " ~ " ' k t ) -  ht(s, k:)]  (6.1) 

where we have introduced the following abbreviations: 

~(klk2; klk;)  

= [<kak2li~)(ekl+ek2 ) �89 +~12)lkl, k12>t2(~(gkt"-}-gk2--gk~--gk~) (6.1a) 

and ~l (e ;k , )=  <kll hl(~)]kl> with ~l(e)=hl(e)[(1 + r / f ~ 1 7 6  f o  = 
< k l l f  ~ [kl> is the FD or BE distribution [see also Eq. (II3.56)]. The 
scattering cross section is determined by the exchange-modified t-matrix 

i~ (E)=  lira i~ (E  ; 2 = 0 )  
~ 0  + 

which is a functional of f0  and fo  [see Eq. (5.9)]. This linear quantum 
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Boltzmann collision operator was first obtained by Boercker and Dufty. (22) 
For the nonlinear version of (6.1) we refer the interested reader to III (see 
Section 5 there). 

Let us now discuss the classical limit of Eq. (5.13) with BQE(e) given 
in Eqs. (5.5)-(5.7). First we note that for Boltzmann (i.e., classical) 
statistics BQE'n(e) vanishes because in this case we can put t/=0. The 
remaining part, B1QE'd(e), reduces to 

BQE'cI(e) hi(e) ~ -Tr2 p12T12(g,)[P12(1 + 0"12) + Tr3 P1230"13]](u1B) -1 hlB(e) 

(6.2) 

since for Boltzmann statistics 

f ~ = P ,  f l  .... 3 P l  .... - - -  

and 

N! 
T r , + l , . . N p  (6.3) 

( N - s ) !  

e -  iL(12) 
[e - iLo(12)] (6.4) 

U~ and h~(e) are equal to U1 and hi(e), respectively, with f replaced by 
p. Of course, the semiclassical quantities (6.2)-(6.4) are still quantum 
operators. A further simplification of (6.2) occurs in the completely classical 
limit (i.e., h--* 0), which, as usual (see, e.g., ref. 19, p. 149), is obtained by 
simply replacing the quantum operators by their classical counterparts and 
the trace operation by a phase space integral. Thus, (6.2) obviously reduces 
to the classical expression: 

BE'cl(~; Pl) hcl(~; Pl) 

f dx2 cl cl 
= - TI2(~)EP2 ( x l ,  x2)(1 + o-12) 

_~. f dx 3 p;l(Xl, X2 ' X3)0.133 [U11-] -1 hcl(~; Pl) (6.5) 

with the following notations: T ~ ( e )  is equal to T12(e) given in (6.4), but 
with L(12) replaced by the classical Liouville operator L~ 
L;1(12) cl + L12, where 

L ; ' ( 1 2 )  = / 0 . ---m Pl" ~r~ + P2 (6.6) 

ov 2( ) 
L~ = i c3rl \Opl ~@2' (6.7) 
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xi= (rg, pi) denotes position and momentum of the ith particle. The 
canonical distribution function is given by 

pC'(x) = ~oo(p) p~(r) 

with X = ( X l , . . . , N N )  , etc., and where ~oo(p)=~Oo(pa)-"CPo(Pu)is 
Maxwell-Boltzmann distribution 

(  3/2 
q o(P) = j exp (-- 2 P2 ) 

The configurational part reads 

P v ( r )  = 0 -1 e - '  v, Q= f dr e -€ 

p~ denotes the reduced distribution function: 

cl p~ (x 1,..., x~) = ~Oo(pl ..... P~) n~(rl,..-,L) 
with 

N! (. 
n~(rl ,..., L) = ( N -  s)---------! J dL+ 1"" dru P v(r) 

The classical version of U1 is then found to be 

U~ 1= mP0(Pl) q- f dx2 r P2) ha(r1, r2)012 

(6.8) 

the 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

aCl, , ~---~ N with tP) =2_.i=1 ad(Pi) the classical limit of a. Note that hC~(e; Pl) is 
space independent, since aC~(p) depends only on the momenta. A further 
consequence of this spatial uniformity is that (U~ ~) t heL(~; Pl) reduces to a 
particularly simple form: 

[U~I-] -1 hcl(/~; P l )~ -  [mPo(Pl)] 1 hO,(e; Pl)  (6.15)  

as can be seen by iterating [U~ I] -1 around [n~oo(Pl)]-I once and making 
use of the fact that 

f dp hCl(~; p) =n_ (aCl(p))cl =0  (6.16) 
8 

(6.14) 
1 

hal(e; Pl) = N f dx2. . ,  dx N pCl(x) aCl(p) 
iL d J 

Finally, the function h~ is the classical limit of ha(e) defined in 
Eq. (2.15) and is given by 

(6.13) 
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where ( - ) d  denotes the classical phase average in the canonical ensemble. 
Moreover, using again (6.16), we see that the second term in (6.5) vanishes. 
Thus, introducing the pair correlation function 

r/2(r 1' r2) 1 (6.17) 
v2(rl,  r 2 ) -  1,/2 

we finally arrive at the folowing classical kinetic equation for hd(t; p~) [(see 
Eq. (5.13)]: 

~h~ p,) = BE'd(p~) hd(t; p,) (6.18) 
0t 

with 

BE'cl(pl) = lim BE'cl(g; p , )  (6.19) 
~ 0  + 

(, 
BE, cI(8; Pl)  -~" rt | dx 2 - T l : ( e ) [ 1  + vz(rl ,  r2) ] (1  q- o12) r (6.20) el 

J 

The initial condition simply reads [see Eq.(3.12) and use that 
( ad (p ) )d  = 0] 

hd(t = 0; Pl) = nq)o(Pl) a~l(pl) (6.21) 

The kinetic equation (6.18) represents the revised linear classical Enskog 
equation for the spatially uniform equilibrium one-particle, one-particle 
time correlation function h~(t; Pl) as obtained by van Beijeren ~6! and van 
Beijeren and Ernst. (7) Indeed, if we redefine our quantities h~ Pl) and 
BE'Cl(pl) as (po l (p l )hCl ( t ;P l )  and (,00-1(pl)BE'Cl(pl) , respectively, we see 
that for space-independent correlation functions the linear Enskog equa- 
tion obtained by these authors [see, e.g., Eqs. (8.16) and (11.3) of ref. 6] 
formally agrees with our expression (6.20). The only difference is that these 
authors consider hard-sphere systems and that therefore their Enskog colli- 
sion operator contains the hard-sphere binary collision operator Thard sphere a12 
whereas in our formalism the binary collision operator ~' r12(g ) for con- 
tinuous interaction potentials occurs: 

1 c, [e - iL;J(12 ) ] (6.22) 
= -tL12 e - iL~ 

Tle(g ) �9 cl 

This quantity is well known in classical kinetic theory (27'13'14~ and reduces 
~0 Thard sphere for hard-sphere interaction. (4'34) --12 

We note that for hard-sphere interactions the pair correlation function 
vi(r I - r 2 )  can be shifted to the left of wharasphere with the result that --12 

822/59/3-4-12 
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v2(r~-r2) is evaluated at }r~-r21 = a (a is the hard-sphere diameter)/s) 
The expression thus obtained represents a form of the linear revised hard- 
sphere Enskog collision operator as usually used in the literature. Such a 
shifting of v2, however, does not seem to be possible for more general 
potentials considered here. 

Finally, it should be noted that due to the noncommutability of 
quantum operators, the linear semiclassical Enskog collision operator (6.2) 
contains static correlations (originating from P123 and U~ -~) which vanish 
in the classical limit (6.20). But we emphasize again that this simplification 
of (6.5) to (6.20) due to the spatial uniformity of hCl(t; Pl) no longer occurs 
when hC~(t; pl) becomes space dependent. In this latter case the demonstra- 
tion of the equivalence between the classical limit of the linear quantum 
Enskog operator obtained in our formalism and the classical hard-sphere 
result derived in refs. 6 and 7 is then more involved, as we shall see in a 
subsequent paper. 

7. Q U A N T U M  RING OPERATOR 

Up to now dynamic correlations due to s-particle collisions (s ~> 3) 
have been neglected; only static correlations originating from the canonical 
density matrix have been retained, including the many-particle effects due 
to the FD or BE statistics. Therefore, to obtain a better description for 
long times, dynamic correlations also have to be taken into account. 
However, as is well known from the classical (13) or semiclassical ~16) case, 
these dynamic contributions cannot be obtained by simply retaining a few 
terms in the cluster series occurring, e.g., in (4.2). [Note that apart from 
the effects due to the FD or BE statistics, only G~2(e) was needed in (4.2) 
to get the linear quantum Enskog equation. ] The reason for this is that for 
small e (which corresponds to long times) the dynamic clusters 61 .... (e) 
contain divergent contributions for s >~ 4 (in 3 dimensions). 4 In the classical 
or semiclassical case the strongest divergences are believed to come from 
the so-called ring events consisting of sequences of s collisions among s 
particles for s/> 3. Therefore, well-defined expressions (as e ~ 0 + ) with 
dynamic correlations from s-particle collisions (s >~ 4) can only be expected 
after having performed partial resummations of the relevant, i.e., most 
divergent terms. In the classical case the resummation of the ring events 
leads then to the ring collision operator (13 ~5,2s) describing the mode- 
coupling effects in a fluid. The generalization of this quantity to the semi- 

4 The finite term G123(e) [G123(e), respectively], which would contribute to the quantum 
generalization of the Choh-Uhlenbeck correction, shall not be considered here separately 
and will therefore simply be included in the following ring summation. 
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classical case was derived in I, but only for the self-diffusion correlation 
function, obtained from Eq. (2.1) when one puts a = b = ~ .  

We shall now briefly present the extension of this result to the case 
considered here, where a and b are given as sums of one-particle operators. 
Thereby we shall also include the many-body effects originating from the 
statistics. However, it must be emphasized here that the quantum ring colli- 
sion operator thus obtained represents only the quantum analog of its 
(semi-)classical counterpart. In particular, this means that this quantity 
alone is probably not sufficient for a proper description of the truly 
quantum mechanical, dynamic correlation effects occurring in a fluid at low 
temperatures. This is also suggested by the investigation of the Lorentz gas 
model, (29) where the quantum long-time tail of the momentum autocorrela- 
tion function does not agree with the quantum analog of the corresponding 
classical quantity. 

Now, to single out these ring events, we can proceed similarly to I 
[see Eqs. 03.68-88)].  As done there, we shall only consider here ring terms 
without static correlations originating from the equilibrium distribution f 
Hence, looking at the generalized collision operator B~(e) as given in 
(4.10), we see that there Nl(e ) can be dropped, for this term vanishes due 
to the effect of Q when static correlations in f l  .... are neglected. With the 
help of Eqs. (A.10) and (4.17), B~(e) then reduces to 

0 
BI(~) hi(8) ~ ~ 2=0 d~(~) 

- .  e?E(~) h (5) + 1 eTr2 .... pl...SG1 .... ( e ) f  m . . . f ;  
2=0s=3 

(7.1) 

with 
p~ .... = • P~ . P ~ k P  ~ * ~ "  .... (7.3) 

s The static correlations of U11 which occur in f~ vanish when taking the derivative with 
respect to 2 due to Eq. (5.1) or when setting it equal to zero. 

12faf~ in the second term. d~ " .s(~) is the where we have replaced f~2 by n 1J2 .. 
renormalized cluster superoperator defined in (A.11). Note that except in 
the linear quantum Enskog collision operator B~E(e) all static correlations 
occurring in Bl(e) have been omitted. 5 

To extract now the ring events from the second term on the rhs of 
Eq. (7.1) and to resum them into a closed expression, we introduce the 
following, symmetrized projection operator: 

f i l  .... = 2 7['a P1 .... 7Ca-1 (7.2) 
a~Ss  
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Its complement 1 - /3~  .... is denoted by {~{ .... . The one-particle projector 
P~ applied to an ordinary operator y is defined as 

(P~ Y)qq'-~" Yqq' (~ q;,qi--k (7.4) 

For a discussion of P~ .... we refer the interested reader to I (see 
pp. 213-214 and 220-221) and note that its symmetrized version (7.2) has 
the same features. 

The procedure is now the following. Insert 

p{ .... ' + O k  - 1  (2~<s'~<s) 

into ~ G 1 .... (~) (after each resolvent) and retain only the P~ .... ' parts. 
Resummation of these terms then yields the quantum ring collision 
operator we are looking for. However, since the actual realization of this 
procedure is rather tedious and especially since its result will be obtained 
as special case of a more general formula derived in a forthcoming paper, 
let us only quote the final outcome of this calculation: 

R l ( e  ) is the quantum ring collision operator and is given by 

1 
R l ( a  ) = --  ~ Tr2 f12(~) 

e - iLo(12 ) - C12(e) 

(7.5) 

B12(E ) (7.6) 

with the following definitions: 

c1~(~) = cl~(~) + c~(~) 
G 0 C~2(e) = - T r 3  T~3(a)(1 + ~3)f3, 

1 123 T12 (e) = - iLl2 
e-- i[Lo(123) + s 

and E12 = rd2L12, s = s ~ [see Eq. (4.15)]. Furthermore, 

i = 1 , 2  

[ ~ -  iLo(123)] 

(7.7a) 

(7.7b) 

(7.8) 

T12(a) = f'12(a) (7.9) 

and 

Blz(e) h i (e )=  ~2 x=o i/~2 1 ro,~fo,~ 
e_iL(12;2)vl 2 

(7.10) 

with L12 ~ = 7Z 12.%t/~12. The fo,~ is equal to f~  defined in Eq. (4.7), but with 
V= 0; f o  is the Fermi (Bose) distribution operator. 
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Rl(e) represents the quantum-statistical generalization of the well- 
known classical (hard-sphere) ring collision operator (~3 15,2s~ (without 
static corrections). To see this more clearly, let us introduce the phase 
space representation (3~ of (super-) operators (for details see also Section 2 
of I). 

A phase function yph(r, p), depending on the c-number variables 
r= (r~,..., ru) and p =  (Pl ..... PN), is defined as the Weyl transform of the 
ordinary operator y: 

yph(r, p ) = ~  eikryp+k/2, p_k/2 (7.11) 
k 

A phase operator S ph, which corresponds to a superoperator S and which 
acts on phase functions, is defined by the relation 

SPh yph(r, p)= (Sy)ph(r, p) (7.12) 

Making use of these definitions and of the fact that b~ and a~ (and hence 
Uaal) are diagonal, it is not difficult to see that the correlation function 
C(e) [see Eqs. (2.18) and (3.7)] can also be written as 

1 
C(/3) : E (hi)pip1 ~ _ BPh(8) (U1 al)plp, (7.13) 

Pl 

with 
ph ph (7.14) B1 (8)Yl  (Pl)  = [Bl ( s  

where we have used that BI(~)=PIBI(e)P 1 and yph(p)=ypp [see 
Eq. (12.22)]. Next, introducing the Fourier transform of phase operators, 

1 f e_ikrsPheik, r SPh(k[k')=-~ dr (7.15) 

and noticing that RPh(e) may be replaced by R~h(~)(0[0), one obtains with 
Eqs. (7.5) and (7.6) 

with 

B~h(~) = B?E'Ph(~) + Rf~(~) 

R~,h(~) = _ !  y, 2[~'(~)(01 k, - k )  
2 k, P2 

1 • 
e - -  (i/m)k. (pt - P2) - CPh(e)( k, -- k lk, - k )  

• B ~ ( ~ ) ( k ,  - k l 0 )  

(7.16) 

(7.17) 
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Here, we have used the matrix multiplication rule 

( Sph ~ph)(k l k ') = ~ Sph(k l k ") gph(k" I k' ) 
k "  

(7.18) 

and momentum conservation. Restricting our further consideration of C(e) 
to small e (i.e., to long times), we may assume as in the classical case (14'15) 
that the dominant contribution of R~h(g) comes from small k values and 
that therefore the quantities TlPh(e)(0lk, - k ) ,  CPzh(e)(k, - -klk ,  - k ) ,  and 
B~h(e)(k, - k ] 0 )  can be replaced by their k = 0  and e = 0  + values, which 
we denote by :P~ 2, C~ and B~ respectively. We also replace the linear 
quantum Enskog operator by its e ~ 0 + limit B~ E'ph. In this approxima- 
tion RPh(e) is denoted by R~ given by 

1 
R~ = - ~ T~ e( i /m)k .  ( P l - P 2 ) -  C~ 

p2,k  

(7.19) 

with 

r~ yph(pl, P2) 

= lim [if'12(e)y]p~p~;pxp2 
~ 0  + 

. t t 
4re ~ ~(PlP2,PlP2) 

Pl,P2 
x [yph(pl, p2)(1 0 0 ph , + t/Up, + qfp~) -- y (Pl, p~)(1 + qfO + t/U02)] (7.20) 

and 

c o 2  = c o + c o 

0 ph  0 C~ Yl (P~)= - lira [Tr2 if'~2(e)(1 + a~2)f2Yl]plpj 
z- -+0 + 

(7.21a) 

= - 4 r e  ~ ~(PlP2;PlPl) 
P2, P ; , P ;  

x { [yPh(pl)f~ 2 + y2Vh(p2)f~ + rlfp, 1 + t/fpl) 

p h  r 0 p h  t 0 
- [Yl (Pl)fp i +  Yz (P2)fpi](1 + q f ~  + t / f o ) }  (7.21b) 

C O is defined analogously. Similarly, one finds from Eq. (7.10) 

B~ ylPh(pl) = --4~(1 + rlf01 --[- q f02) ~ f(pl, P2; PlPl) 
Pl ,P2  

0 0 0 - p h  - p h  t - p h  t x (1 + qf~ + rlfp2)fplfp;[Y~ (P~) + -V~h(P2) - Y l  (Pa)Y2 (P2)] 

(7.22) 
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ph 0 1 etc. The quantity ~(Pl P2, PIP2) where yph(p l )  = Yl (P~)[fp~( + r/f~ " ' ' 
is given in (6.1a). In deriving these expressions we have made use of some 
results obtained in Appendix D of II, in particular of Eq. (IID.17) [for 
(7.20) and (7.21)] and Eq. (IID.19) [for (7.22)]. Note that all three colli- 
sion operators 2?~ C1 ~  and B~ possess a structure very similar to the 
linear quantum Boltzmann collision operator given in Eq. (6.1). 

Comparing now (7.19) with the corresponding quantity obtained in 
the classical kinetic theory of hard-sphere systems [see, e.g., ref. 24, 
Eq. (2.22a)], we see that R~ indeed can be regarded as the quantum 
statistical generalization of the low-density, classical ring collision operator. 
The most prominent differences between the quantum and classical expres- 
sions are the FD (BE) distribution functions multiplied by t/that occur in 
R ~ These factors, which of course have no classical counterparts (q can be 
put to zero for classical statistics), result from many-body effects due to 
particle statistics. Further differences from the classical case are the 
exchange-modified scattering cross sections (occurring in if'~ C~ and 
B~ which describe the collision between two particles interacting via a 
continuous potential (with possible bound states). 

Although it would be interesting to further analyze R~ with the help 
of analogous methods used in classical kinetic theory (see, e.g., ref. 24), this 
shall not be attempted here. Let us only mention that in the semiclassical 
regime (i.e., with Boltzmann statistics) R~ can be expressed in terms of 
eigenfunctions and eigenvalues of the operator (i/m)k(pl-p2)+C~ 
exactly as in the classical case (see, e.g., ref. 24, p. 271). The only difference 
is that here the transport coefficients occurring in the corresponding eigen- 
values (hydrodynamic modes) are determined by their semiclassical 
(instead of hard-sphere) Boltzmann equation value. Thus, the same mode- 
coupling effects as in the classical case result from the semiclassical ring 
collision operator. In particular, for the time correlation function occurring 
in the kinematic shear viscosity [see Eqs. (5.16) and (5.19)] one obtains 
the same long-time tail of the form t a/2 (d=2,  3 is the number of 
dimensions) as found in hard-sphere systems. (14'3~) 

8. D I S C U S S I O N  

In the previous sections we have derived a linear quantum kinetic 
equation for the homogeneous equilibrium one-particle time correlation 
operator hi(t) by means of a superoperator formalism (e.g., Liouville and 
projecting operators) that is mainly based on cluster expansion techniques. 
This equation applies to normal quantum fluids consisting of fermions 
(bosons) which interact pairwise via a short-range, translationally invariant 
potential with arbitrarily strong interaction strength. It should be noted in 
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this connection that the formalism presented here (as well as in II and III) 
allows also the description of particles with spin; only the following minor 
modifications are necessary. The single-particle state [ki) occurring in the 
direct product state (2.13) is to be replaced by the state lki, cry)= 
Iki) Io'~), where ~ denotes the spin component of the ith particle along a 
chosen z axis (e.g., a~= +1/2 for a spin-l/2 fermion). Thus, one only has 
to replace the wave vectors ki by (k~, o-~) everywhere, in particular in the 
definitions for the diagonal projectors P [Eq. (2.23)] and P [Eq. (3.4)], 
respectively. The observables a and b must then be diagonal in these new 
states. If, in addition, the interaction potential is spin dependent, it is no 
longer allowed to drop projectors U due to momentum conservation (as 
we have done several times in the derivation), since the considered quantity 
need not be diagonal in the spin indices. Now, a careful reexamination 
shows that the only modification needed in this case simply consists in 
replacing the static quantity U1 [-given in Eq. (2.21)] by its diagonal part 
PIU~ in all formulas; everything else remains unchanged. Therefore, the 
whole formalism can also be aplied, for instance, to a magnetization time 
correlation function of the type (s:(t)s:), where sZ= ~-~N= 1sz is the z com- 
ponent of the total spin operator. 

Next, the many-body effects due to FD (BE) statistics are fully taken 
into account in the form of a renormalized cluster series of the dynamic 
(i.e., time-dependent) quantities. Thereby the static correlations originating 
from the canonical density matrix can always clearly be distinguished from 
the dynamic ones, which is a great advantage of the method presented 
here, e.g., over the familiar Green's function formalism, where such a clear 
distinction is not possible (for this see also ref. 32). As a consequence of 
this, we have been able to single out the terms relevant to the Enskog 
approximation of the collision operator. This approximation is, in analogy 
to the classical case, characterized by the fact that dynamic correlations are 
neglected (only uncorrelated binary collisions are taken into account as in 
the Boltzmann equation), whereas static correlations are treated exactly. In 
this approximation, therefore, the short-time limit of the correlation 
operator hi(t) (regarded as solution of the linear quantum Enskog 
equation) agrees with the exact initial value h~(0). The kinetic equation 
thus obtained generalizes the revised linear Enskog equation for classical 
hard-sphere systems to normal quantum fluids (with more general interac- 
tion potentials). 

We have also shown how to express Green-Kubo formulas for 
transport coefficients (such as the shear viscosity or the thermal 
conductivity) in terms of the linear quantum Enskog collision operator 
B~ ~. It would now be very interesting to further evaluate these quantities 
for physical systems such as normal 3He, 4He, spin-polarized hydrogen, etc. 
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It is clear that such an evaluation will still be complicated mainly due to 
the fact that, similar to the classical case, one has to find approximate 
expressions for the static operators f~, f~2, f123, and U~ -1 occurring in B? E 
(note that these operators contain the full many-body Hamiltonian). 
Without going into further details here, let us only mention that 
approximations which could be interesting in this connection have been 
studied in Section 3 of ref. 25, where in particular an approximate value for 
f12 has been derived. We intend to come back to this problem in a 
forthcoming paper. 

Finally, by resumming a special class of terms (ring events) in the 
renormalized cluster series, we arrived at the quantum-statistical analog of 
the classical hard-sphere ring collision operator (without static correc- 
tions). We have seen that in the semiclassical limit (i.e., with Boltzmann 
statistics) this quantum ring operator leads to the same qualitative 
behavior of correlation functions (i.e., in particular with the same long-time 
tails) as known from classical hard-sphere systems. As already announced, 
these (and other) higher-order dynamic correlations shall be investigated 
more systematically in a forthcoming paper. 

A P P E N D I X  

In this Appendix we derive Eq. (4.12). To begin with, we first perform 
a cluster expansion of the distribution operator f~  .... . It should be noted 
here that ~ f ~  . . . .  has the same cluster properties as f l  .... since exp[2h(e)] 
occurring in f l  .... decays into a product of one-particle operators that 
cannot create any additional correlations between the particles. Now, for 
reasons which will become clear further below, we choose the following 
cluster decomposition: 

f~  .... =Tz~ .... g~ .... + g ~  . . . . .  s > ~ 2  (A.1) 

with 

and 

.... z H  A2, 
l<.i<j<~s l(#i , j)  

g2 __f2 --12r2 2 7.C12 
ij - -  .." ij - -  7~ J i " f j ' 1 + ~ a 2 (A.3) 

The cluster operator gl-;...s (being zero for s ~< 2) connects (by V~) more 
than two particles from the set {1,..., s}; hence, this term, inserted into 
Eq. (4.11), cannot lead to a dynamic two-particle contribution [see also 
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Section 4 of II,  in par t icular  Eq. (II4.9)] .  This term will therefore be put  
into DTC.  The  relevant  te rm for our  purpose  is n I .... gl  .... whose main  
features are that  it contains  all correlat ions resulting f rom the statistics (i.e., 
7~ t .... ) as well as the two-part icle  correlat ions created by the interact ion V o 
(i.e., g,j.2) 

Inser t ion of (A.1) into (4.11) then yields 

dr(e) = ~ e Tr2 . . . .  p 1  . . . .  G1 . . . . .  (~)7~1 . . . .  g~  . . . .  -{- D T C  
s = 2  

(A.4) 

Since -4 gl  ...... is a symmetr ic  opera tor ,  G1 .... (e)~ 1 .... can be b rought  to the 
following form (see Appendix  B of II) :  

G 1  . . . . .  s ( e ) T c l  . . . .  ~12 " s---- G 1  . . . .  ( ~ )  g l  2 . . . .  (A.5) 

with 

1 1 
G 1  . . . .  (/~) = i/~2 iQ12(L13 + L23 +/7,12,3) iQ ~23 

e - iL(12) e - iL(123) 

X (/714 +/7,24 +/7,34 +/7,i2,4 + L13,4 +/723,4 ) 

1 1 • iQ1234... 
e - iL(1234) ~ - iL(1 . . . s  - 1) 

•  1 .... l ( E l s - ~ - - ~ - E s - l s ~ -  E L i j s )  1 
l<.i<j<~s-1 ' e - i L ( 1 . . . s )  

where Q1 . . -g= 1 - P ~ ' " k  [see Eq. (3.4)] and where 

Eo Y = [ vu, Y], V'~ = vo. (1 + ~12) 

Lo-.k y = (Xik + 7rjk) Vii y -- y Vo-(rtik + 7Zjk) 

(A.6) 

(A.7a) 

(A.Yb) 

Next  we note  tha t  in -4 gl  .... only the te rm 

1 2 " 2 2 . f 2  - -  _ i 4 2  2 
5 ( g 1 2 + T z 1 : f ~  " J s - - Z J 1 2  " f  2 ) f  3 " " f~ ' "  " f s  (a .8)  

must  be retained in the Enskog  approx imat ion ,  since the other  terms 
cannot  lead to a dynamic  two-part ic le  contr ibut ion,  for the same reason as 
above  for ~ .... . Thus,  (A.4) reduces to 

1 ~ 
�9 s 1 .... ( ) f 1 2 f 3 " '  " f ,  + D T C  (A.9) d~ l ( e )=2sZ=2eTr2  p1 .... ~ ~ ~ ~ 2 
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For  this expression we can now perform exactly the same resummation 
procedure  as in Appendix A of III (replace there i by - i ) .  The  fact that 
here the distribution f~2 is not  a product  of the form ~" )~ f l f 2  (as is the case 
in III)  has no influence. As a result one obtains [see Eq. (III4.4)] 

d~(e) �89 ~ eTr2  .... P~ .... d~ .... ( e ) f ~ 2 . f 3  x . . . .  f s  + D T C  (A.10) 
s = 2  

with the renormalized cluster superopera tor  

G 1 .... (5) = iE12 

with 

1 1 
iQ12(E13 + ff~23 + ff-'12,3) 

e - is 2) e - is 2) 

x i Q 1 2 3 " " i Q  1 .... ~(Els+...+E,I,+ ~ Eo.s ) 
1 <~i<j<~s 

1 
x Ms(e; 2) (A.11) 

e -- i[,(1 . . .  s; 2) 

Z 
l <<.i<j<~s 

[see Eq. (4.15)]. Here, M,(e;  2) compensates those s-particle contr ibutions 
in the first term on the rhs of the foregoing equat ion which can reduce to 
s '-particle contr ibut ions [when inserted into Eq . (A.10) ]  with s ' < s .  
Otherwise, these contr ibut ions would be counted twice in the resummation 
procedure  [see also Eqs. (III4.10-12)] .  For  instance, 

etc. 

Mz(e; 2) = 0 (A.12) 

1 1 
m3(e; ,)~)=- i/S,12 iffq2,3 (a .13)  

e - is 2) e - is 2) 

An alternative form of d~ .... (e) is [see (I I IA.5)l  

G21 ..... (8) = iLl2 1 iQI2(L13 + L23) ] i•123 
e - is 2) e -- is 2) 

1 
x . . .  iQ 1 .... 1(L1 s +  ..- +L~  is) 

5-- is . . . s - -  1; 2) 

1 
x n I .... - M,(e; 2) (A.14) 

- is - . . s ;  2) 

which holds when applied to a symmetric operator.  
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01 ...k is given by 1-/~1 ...k with 

/ ~ l . . . k =  ~ ~z~p1 k T r ~ l k ~ U p ( 1 . . . k )  (A. 15) 

~r ~ s k 

Retaining in (A.10) only two-particle dynamic contributions (i.e., the s =  2 
term), we arrive at Eq. (4.12). 
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